VIBROMOTORS FOR PRECISION MICROROBOTS

APPLICATIONS OF VIBRATION SERIES

K. Ragulskis, Editor

K. Ragulskis, R. Bansevičius, R. Barauskas, and G. Kulvietis, Vibromotors for Precision Microrobots

IN PREPARATION

P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, and P. Stepanov, Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness

S. Koroblev, V. Shapin, and Yu. Filatov, Vibration Diagnosis in Precision Instruments

I. Vulfson, Vibroactivity of Branched and Ring Structured Mechanical Drives

K. Ragulskis and Yu. Yurkauskas, Vibration of Bearings

VIBROMOTORS FOR PRECISION MICROROBOTS

K. Ragulskis

R. Bansevičius

R. Barauskas Kaunas Polytechnic Institute Kaunas, Lithuanian SSR

G. Kulvietis Vilnius Engineering Construction Institute

English Edition Editor

Eugene Rivin

Department of Mechanical Engineering Wayne State University Detroit, Michigan

OHEMISPHERE PUBLISHING CORPORATION

A member of the Taylor & Francis Group New York Washington Philadelphia London

VIBROMOTORS FOR PRECISION MICROROBOTS

Copyright © 1988 by Hemisphere Publishing Corporation. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. Originally published as Vibrodvigateli, Mokslas, Vilnius; Raschet i proyektirovaniye vibrodvigateley, Mashinostroyeniye, Leningrad; and Promyshlennye roboty dlya miniatyurnykh izdeliy, Mashinostroyeniye, Moscow.

Translated by B. Stulpinas.

1234567890 EBEB 8987654321098

This book was set in Times Roman by Hemisphere Publishing Corporation. The editor was Victoria Danahy; the production supervisor was Peggy M. Rote; and the typesetters were Sandra Watts and Janis Durbin. Edwards Brothers, Inc. was printer and binder. Cover design by Sharon M. DePass.

Library of Congress Cataloging-in-Publication Data

Vibromotors for precision microrobots

(Applications of vibration)

Compilation of: Vibrodvigateli; Raschet i proektirovanie vibrodvigatelei; and Promyshlennye raboty dlıa miniaturnykh izdelii.

Bibliography: p.

Includes index.

1. Vibrators-Design and construction. 2. Robots, Industrial. I. Ragul'skis, K. M. (Kazimeras Mikolovich) II. Rivin, Eugene I. III. Barauskas, R. A. (Rimantas Antanovich). Raschet i proektirovanie vibrodvigatelei. IV. Vibrodvigateli. English. 1900. V. Promyshlennye raboty dlia miniatiurnykh izdelii. VI. Series

TJ208.V52 1988 621.46 88-6919 ISBN 0-89116-549-5

CONTENTS

PREFACE	vii
OPERATING PRINCIPLES AND SCHEMATICS OF VIBROMOTORS	1
Survey on the development and study of vibromotors Operating principles of vibromotors Classification of vibromotors	1 5 18
VIBRATION CONVERTERS (TRANSDUCERS) AND FORMATION OF MOTION LAWS	23

- 2.1 Piezoelectric converters of single component vibrations
- 2.2 Excitation of multicomponent vibrations

1

1.1

1.2

1.3

2

2.3 Characteristic features of application of the magnetostriction converters

5

23

23

33

61

CONTENTS

3	STUDY AND COMPUTATIONAL ANALYSIS OF BASIC CHARACTERISTICS OF VIBROMOTORS	63
31	Vibromotors with oblique impacts	63
3.2	Study of vibromotors with torsional wave vibrations	73
3.3	Motion synchronization of several vibromotors, operating in	79
2 4	parallel	70
5.4	computational analysis of vibration converters	86
3.5	Finite element models of vibromotors	110
3.6	Vibromotors with discrete contact	132
3.7	Wave motion vibromotors	148
4	EXPERIMENTAL RESULTS	167
4.1	Characteristics and parameters of the vibromotors	168
4.2	Characteristics of the vibromotors in steady state motion	171
4.3	Instability of the average and instantaneous speed	174
4.4	Characteristics of vibromotors in transient and stepping	106
	regimes	190
5	VIRPOMOTORS WITH SEVERAL DEGREES OF	
5	FREEDOM	203
51	Controllable kinematic pairs	203
5.2	Schematics of vibromotors with several degrees of freedom	209
5.3	Sensorization of the controllable kinematic pairs	243
5.4	Flexible controllable kinematic pairs	256
6	APPLICATION OF VIBROMOTORS	261
6.1	Continuous motion devices	261
6.2	Positioning with vibromotors	266
6.3	Execution of motion laws	272
6.4	Vibromotors as drives for micromanipulators	276
6.5	Various problems	219
6.6	Drives of robots for miniature articles	265
	REFERENCES	297
	INDEX	303

vi

PREFACE

Recently, considerable progress has been achieved in all branches of technical sciences and technology; however, especially noticeable changes have taken place in instrument building. In precision instrument building, advances of precision mechanics, optics, electrotechnics, and electronics (as well as automatic and remote control) were being used. Specifications for various types of devices become more demanding: they should be small; reliable; have high responsive-ness and high efficiency; and be able to perform in extreme conditions (in

vacuum, under acceleration and vibratory overloads, in a wide temperature range, and at increased radiation). Especially strict requirements have been imposed for actuation elements and drives of precision devices and instruments.

Electromotors do not always satisfy the increased demands; they have a large time constant, introduce elements of low rigidity into the dynamic system, and have a limited range of speed. The resolution of electric motors (including stepper motors and motors with reducers) is relatively low and is measured in units of angular minutes or tenths of a millimeter in the linear drives. Such characteristics cannot satisfy the increased demands of electromechanical units. Therefore, the development of a new type of drive, based on the transformation of high-frequency microvibrations into directed motion, is of great interest to designers of precision devices.

By analogy, with electrical, pneumatic, and hydraulic motors, the authors